Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

9701/32
Paper 3 Advanced Practical Skills 2
May/June 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 14 and 15.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of $\mathbf{1 4}$ printed pages and $\mathbf{2}$ blank pages.

1 HA is an organic acid where A^{-}is the anion. You will determine the relative formula mass, M_{r}, of HA by titration with sodium hydroxide of known concentration and so identify the anion, A^{-}. The equation for the reaction is shown.

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

FB 1 is a solution of organic acid, HA, containing $12.60 \mathrm{~g} \mathrm{dm}^{-3}$.
FB 2 is 0.100 moldm $^{-3}$ sodium hydroxide, NaOH .
thymol blue indicator

(a) Method

- Fill the burette with FB 1.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 2 into a conical flask.
- Add approximately 10 drops of thymol blue indicator. This indicator is blue in alkaline solutions and yellow in acidic solutions.
- Perform a rough titration and record your burette readings in the space below.
\qquad cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain that any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 1 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FB 1 to be used in your calculations. Show clearly how you obtained this value.

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of sodium hydroxide present in $25.0 \mathrm{~cm}^{3}$ of FB 2 pipetted into the conical flask.

$$
\text { moles of } \mathrm{NaOH}=
$$

\qquad mol
(ii) Use your answers to (b) and (c)(i) to determine the concentration of the organic acid HA, in FB 1, in moldm^{-3}.
concentration of HA in FB $1=$ \qquad moldm^{-3}
(iii) Use your answer to (ii) and the information given on page 2 to determine the relative formula mass, M_{r}, of the organic acid, HA.

$$
M_{\mathrm{r}} \text { of } \mathrm{HA}=
$$

\qquad
(iv) The organic acid was known to have one of the following structural formulae.
$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{2} \mathrm{ClCOOH}$
$\mathrm{CHCl}_{2} \mathrm{COOH}$
$\mathrm{CCl}_{3} \mathrm{COOH}$

Use your answer to (iii) and the Periodic Table on page 16 to identify the anion, A^{-}.
\qquad
(d) A student carried out the same procedure accurately but was supplied with a solution of less concentrated sodium hydroxide by mistake.
(i) What effect would this have on the calculated value of the relative formula mass, M_{r} ? Explain your answer.
\qquad
\qquad
(ii) Explain how this would affect the identification of the acid.
\qquad
\qquad

2 You are to determine the enthalpy change of neutralisation for a different acid from that used in Question 1. The acid is represented by HB where B^{-}represents the anion.

$$
\mathrm{HB}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FB 3 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ acid, HB .
FB 4 is $72.00 \mathrm{~g} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH .

(a) Method

Read through the method before starting your practical work and prepare a table below for recording your results.

Experiment 1

- Place the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Pour $25 \mathrm{~cm}^{3}$ of FB 3 into the larger measuring cylinder.
- Measure and record the temperature of FB 3.
- Rinse and dry the thermometer.
- Use the smaller measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FB 4 into the plastic cup.
- Measure and record the temperature of FB 4.
- Add the $25 \mathrm{~cm}^{3}$ of FB 3 to FB 4 in the plastic cup and stir the mixture. Measure and record the highest temperature reached.
- Calculate and record the average initial temperature of the solutions.
- Calculate and record the temperature rise.
- Empty the plastic cup, rinse it with water and shake it to remove excess water.

Experiment 2

- Repeat the method given for Experiment 1 using $50 \mathrm{~cm}^{3}$ of each solution.
- Use the larger measuring cylinder for FB 3 and the smaller measuring cylinder for FB 4.

Results

I	
II	
III	
IV	

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Show by calculation that in Experiment 1, the number of moles of acid was in excess of the number of moles of sodium hydroxide.
(ii) Calculate the heat energy evolved in Experiment 1.
[Assume that 4.2 J of heat energy changes the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]
\qquad
(iii) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for Experiment 1.
enthalpy change $=$ \qquad
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
(sign) (value)
(iv) Calculate the number of moles of sodium hydroxide neutralised in Experiment 2.
moles of $\mathrm{NaOH}=$ \qquad mol
(v) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for Experiment 2.

$$
\begin{aligned}
& \text { enthalpy change }= \\
& \text { (sign) (value) }
\end{aligned}
$$

(c) (i) The accuracy of the larger measuring cylinder is $\pm 0.5 \mathrm{~cm}^{3}$.

The accuracy of the smaller measuring cylinder is $\pm 0.25 \mathrm{~cm}^{3}$.
Calculate the maximum percentage error in the measurement of the volume of FB 3 used in Experiment 2 and the measurement of the volume of FB 4 used in Experiment 2.

Show your working.
maximum \% error in volume of FB 3
maximum \% error in volume of FB 4
(ii) Suggest a change to the method used in (a) that would improve the accuracy of your results.
\qquad
\qquad

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
(a) FB 5 and FB 6 are solutions of acids of equal concentration in moldm^{-3}. One solution is a weak acid and the other is a strong acid.
(i) Devise and carry out a chemical test to find out which of FB 5 and FB 6 is the weak acid. Record your test, observations and conclusion in the space below.
(ii) Another acid, FB 7, is a dilute solution of one of hydrochloric, nitric or sulfuric acids.

Carry out the tests in the order given in the table below until you are able to identify FB 7. Record your observations. If any test is unnecessary write 'not needed'.

test	
To a 1 cm depth of FB 7 in a test-tube add aqueous silver nitrate.	
To a 0.5cm depth of FB 7 in a boiling tube add a 1 cm depth of aqueous sodium hydroxide and a small piece of aluminium foil and warm.	
To a 1 cm depth of FB 7 in a test-tube add aqueous barium chloride or aqueous barium nitrate.	

FB 7 is \qquad acid.
(b) FB 8 contains a cation listed in the Qualitative Analysis Notes. FB 9 is a solution of an organic salt. Carry out the following tests and record your observations.

test	
(i)To a 1 cm depth of FB 8 in a test-tube add aqueous sodium carbonate.	
(ii)To a 1 cm depth of FB 8 in a test-tube add a 1 cm depth of aqueous potassium iodide, then	
add aqueous sodium thiosulfate	
until in excess.	

(vii) Identify the cation in FB 8.
cation
(viii) Write an ionic equation for a precipitation reaction you observed during your experiments with this cation. Include state symbols.

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-(\mathrm{aq})}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{A} l$ foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	毋 ¢ ¢
๕吅	
	® 을
	\＆¢ 镸
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

